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Abstract

Place recognition is a crucial task in autonomous driv-
ing systems that has been actively researched. However,
when it comes to thermal infrared (TIR) image-based place
recognition, it has shown poor performance due to the
variation in appearance caused by temperature differences
throughout the day, which frequently occurs in outdoor en-
vironments. To address this, we propose a GAN-based ther-
mal image translation model that translates thermal im-
ages captured at different times of the day into contrast-
consistent and detail-preserving images, achieving time-
agnostic thermal image representations. We applied this
translation model as a preprocessing block to common
place recognition models and achieved a top-1 accuracy
of 80.69% on NetVLAD and 46% on DBoW, outperforming
other baseline methods on the benchmark STheReO dataset.

1. Introduction
In recent years, thermal infrared images have gained

popularity in computer vision applications, especially in au-
tonomous driving related to visual perception [16] and lo-
calization [11, 20, 24]. In particular, thermal images have
a distinct advantage over RGB images in that they capture
emitted thermal infrared radiation from objects, as opposed
to RGB images which capture reflected visible light. This
unique characteristic enables thermal images to maintain
their robustness in poor illumination conditions and adverse
weather conditions, such as rain, snow, or storms, making
them an attractive alternative for autonomous driving. Fur-
thermore, the use of thermal images in the context of au-
tonomous driving can provide an added level of safety in
outdoor situations where visibility is compromised by illu-
mination or adverse weather conditions.

Despite their advantages, thermal images have several
limitations, such as poor resolution, low contrast, ambigu-
ous object boundaries, and lack of color information, which
limit their adaptability to methods designed for RGB im-

(a) Thermal images at identical location from different time period and
their respective temperature histogram. Y axis of the histogram represents
the bin count and X axis represents the temperature values of each pixel
expressed in 14-bit radiometric data

(b) Proposed thermal image place recognition

Figure 1. Research overview.
ages [15] More importantly, from an autonomous driving
perspective, the greatest challenge in using thermal images
lies in their changing visual appearance over time due to
shifts in the temperature distribution of the environment. As
shown in Fig. 1a, the temperature histograms of thermal im-
ages for the same scene vary depending on which time of
the day it was taken from. Such appearance discrepancies
caused by shifts in temperature distribution of the environ-
ment pose a critical performance degradation for thermal
image-based place recognition.

In fact, classical methods for place recognition, such as
DBoW, have shown limitations in thermal images due to ap-



pearance discrepancies [21]. To overcome this limitation,
previous studies have proposed solutions to minimize the
appearance discrepancy between a query and a key thermal
image in place recognition. Shin et. al. [21] proposed a
linear transformation function to amend the intensity and
contrast of thermal images, but this approach may not be
applicable for longer time intervals with larger appearance
differences. Saputra et al. [20] utilized a learning-based
method to formulate a global descriptor using deep neural
embedding for place recognition, but this approach requires
paired RGB images for training and may not effectively ad-
dress appearance discrepancies originating from differences
in temperature in outdoor environments.

In our research, we aim to address the temporal temper-
ature discrepancies that limit the performance of thermal
image-based place recognition. Typically, we have found
that thermal images taken at night have lower contrast than
those taken during the day, as the environment is colder at
night. In the RGB domain, previous works have used GAN-
based image-to-image translation to translate night-time
RGB images to daytime RGB images, thereby overcom-
ing illumination discrepancies between two images of the
same place and improving place recognition performance.
Inspired by this approach, we propose a time-agnostic ther-
mal image translation model that can minimize the distribu-
tional differences caused by temporal discrepancies in ther-
mal images, as shown in Fig. 1b. We define ”time-agnostic”
in thermal imaging as the ability to translate thermal images
captured at any time of day into a consistent representation,
as if all images were captured at the same time of day. Es-
sentially, our model aims to produce time-agnostic thermal
image representations, where the image appearance is not
affected by environmental changes.

Previous studies in RGB [1, 4] and multispectral place
recognition [7] leveraged bijective and deterministic map-
ping based image-to-image translation models, such as Cy-
cleGAN [25]. In contrast, we employ a multi-modal image-
to-image translation model to ensure the consistency of the
styles of the translated thermal images, which can hardly
be achieved with mapping function-based translation net-
works. In addition, due to poor contrasts of thermal im-
ages, key semantic attributes such as buildings and roads are
hardly preserved in the translated thermal image. To prevent
such loss of meaningful information, we enforce edge con-
sistency between the original and the translated image by
employing laplace of Gaussian loss. Overall, we summa-
rize the contributions of our research as the following:

• We propose an edge-preserving thermal contrast uni-
fication translation network that yields time-agnostic
thermal image representations for place recognition.

• We demonstrate the validity of our translation model in
improving thermal image-based place recognition that

overcomes the limitations of existing methods.

• Achieving state of the art performance in thermal
image-based place recognition on the STheReO [23]
benchmark dataset.

2. Related Works
2.1. Using Image translation for place recognition

Several previous studies utilized image to image trans-
lation to minimize the appearance discrepancy between
the query and key image for place recognition. Many of
these studies leveraged unpaired image-to-image transla-
tion leveraging cyclic consistency due to its convenience in
training data acquisition. However, as CycleGAN is known
for being underconstrained [19], several recent variants im-
posed additional loss functions [1, 4] or added contrastive
learning to the baseline architecture [7, 19].

DejavuGAN [4] enforced additional edge-preservation
losses to the generator and domain discriminator loss for
preserving key geometric details and domain-specific char-
acteristics. ToDayGAN [1] incorporated a three-way dis-
criminator responsible for handling each texture, color, and
gradient of the translated RGB image. However, as they
both use deterministic bijective generators, the styles of the
translated images in thermal images cannot be achieved. In
addition, due to the low image contrast and ambiguous ob-
ject boundaries in thermal images, translated images using
such methods hardly preserve the key apparent attributes in
the image, such as buildings and roads.

To overcome the limitations of the previous methods, we
argue that a multimodal approach should be used instead,
as multimodal methods disentangle images into content and
style vectors, enabling the control of the style of the trans-
ferred image. MUNIT [8] first pioneered this idea, and sub-
sequent developments such as StyleGAN [12,13] increased
the expressivity of latent vectors through learnable mapping
functions. Similar to MUNIT, DRIT disentangles an im-
age into content and style and uses a diversity loss term to
encourage the generator to produce diverse outputs for the
same input image. StarGANv2 [6] is a multimodal and mul-
tidomain method that utilizes learnable mapping functions
in a multidomain setting by using encoded domain specific
style codes. Despite the advancements in these networks
to model complex attributes, our research focuses on in-
vestigating whether even a simple multimodal translation-
based network would be adequate in minimizing temporal
discrepancies in thermal images to enhance place recogni-
tion performance.

To preserve details in the translated images, previous
studies leveraged edge-guided losses [5, 18, 22]. Luo et al.
[18] leveraged multi-task learning to extract edges from im-
ages via an additional auxiliary task. However, this method
requires edge ground truth labels for each image. Xu et



al. [22] proposed a CNN-based edge filter to smooth RGB
images, but paired training data was required to preserve the
edges in the reconstructed image. In contrast, our method
achieves edge consistency without employing an additional
auxiliary network or requiring paired image-edge pair data.
Instead, we use Laplace of Gaussian loss to model edge
consistency between two images, penalizing the translated
network based on edge similarity between the input and re-
constructed thermal images.

2.2. Thermal image-based place recognition

Building upon the seminal method of NetVLAD [2] for
learning-based place recognition, recent studies have con-
tinued to advance RGB-image based place recognition, with
models incorporating self-supervision [3], multi-scale net-
works [14], and advanced contrastive learning losses [7].

However, despite progress in RGB-based place recogni-
tion, studies on thermal image-based place recognition are
still in their infancy, with many recent studies on SLAM
[11, 21] still relying on DBoW. Shin et. al. [21] proposed a
method for estimating vehicle states using sparse LIDAR
points projected on thermal images, with long-term drift
correction achieved using a global descriptor based on ORB
features from 8-bit rescaled thermal images. To account for
time-dependent differences in image intensity, an affine illu-
mination transformation model was used, but this approach
may not work well for thermal images taken at night due to
low contrast and different temperature distribution.

TI-SLAM [20] used a learning-based place recognition
method in which the thermal images are encoded into a 128-
dimension global descriptor using a CNN-based encoder
and trained using triplet loss. However, its training datasets
are limited to indoor and tunnel scenes with little illumina-
tion change across different time periods, which makes it
difficult to generalize this method to outdoor environments
where day and night thermal images have little similarity.

Most studies have conducted experiments on thermal
place recognition in indoor settings, where the appearance
discrepancy is minimal between a query and a key image.
When tested in outdoor settings, the difficulties arising from
temperature differences between two thermal images have
been acknowledged, but discrepancies at longer time inter-
vals have not been addressed. We hypothesize that by min-
imizing the appearance discrepancy between two thermal
images using GAN-based translation networks, we could
ameliorate the performance of thermal image-based place
recognition for outdoor thermal images.

3. Time-agnostic Thermal Image Translation
3.1. Overview

Fig. 2 illustrates the proposed method. Our main idea
is logical and simple. We use the thermal image transla-

(a) Overview of the proposed image translation network

(b) Overview of the thermal image-based place recognition pipeline/

Figure 2. Overview of the proposed image translation network and
the thermal image-based place recognition pipeline

tion model as a preprocessing unit to unify the intensities
of a pair of thermal images. Given a pair of thermal im-
age each of which was taken from different time but at the
same location, we translate each thermal image with identi-
cal style vectors to yield pseudo-thermal images. As these
translated pseudo thermal images ideally have similar distri-
bution then the original ones, appearance wise, they should
look the same. Afterwards, like shown in Fig. 2b, the two
images are used as the input to a learning-based place recog-
nition network, namely NetVLAD [2]. Our network design
choices and details for thermal image-based place recogni-
tion model will be explained in the following subsection.

3.2. Setting the domains

Before introducing our network architecture, it is essen-
tial to define the two domains for translating low-contrast
thermal images into relatively higher-contrast thermal im-
ages. As shown in Fig. 1a, which illustrates the average
histogram of all thermal images for each sequence of the
STheREO dataset, the histogram of thermal images cap-
tured at night is located at the lower end of the spectrum,
while the histogram of thermal images captured during day-
time (morning and afternoon) is not only at a wider range
but also has many components residing at the higher end of
the spectrum, demonstrating higher image contrast. There-
fore, we separated the dataset into the two domains in the
following way: night-time thermal images, which have
lower contrast, and day-time thermal images, which have
higher contrast.

3.3. Network Architecture

We enhanced the MUNIT [8] baseline model by adding
an edge-enhancement loss function and a domain discrim-
inator loss to improve the appearance of translated ther-
mal images. As shown in Fig. 2a, our network comprises
shared content encoders, individual time-specific style en-
coders, and a single decoder. The shared content encoder



extracts common geometric features from input thermal im-
ages, while the individual style encoders capture specific
thermal image characteristics, such as heat intensity and
contrasts, and convert them into separate style latent vec-
tors for each domain.

3.4. Loss functions

To train our network, we have employed loss functions
commonly used in multimodal image-to-image translation
networks.

Image reconstruction Loss: This loss is used to train
the image translation generator via training its ability to re-
construct given input image.

LxA
recon = E[||GA(E

c
A(xA), E

s
A(xA))− xA||1] (1)

Content and Style Reconstruction Loss: This loss en-
forces constraints on each content and style encoder by re-
quiring them to reconstruct the original image from the en-
coded content and style vectors.

LcA
recon = E[||Ec

B(GB(cA, sB))− cA||1] (2)

LsB
recon = E[||Es

B(GB(cA, sB))− sB ||1] (3)

In addition, we also included in additional Laplace of
Gaussian loss for edge preservation and domain discrimi-
nator loss to enhance the representation ability of the night
and daytime thermal images.

Laplace of Gaussian (LoG) Loss: The LoG loss mea-
sures the similarity between the Laplacian features of the
original and reconstructed images, penalizing the model for
generating images with dissimilar second-order gradients at
the edges. To extract the Laplacian features, 3 × 3 Lapla-
cian filters are applied to each of the three image channels,
followed by global-average pooling. This process is repre-
sented in (4).

LLap = E[||L(xB)− L(xB,recon)||1] (4)

L(xDTIR) =
1

3
(L(x1) + L(x2) + L(x3))

Domain discriminator loss: The role of domain dis-
criminator is to classify whether given two images are from
the same domain. For this instance, given translated day-
time thermal images and real daytime thermal images, the
role of the discriminator is to classify whether both images
were taken at the same time period. The domain discrimi-
nator is denoted as shown in Equation (5).

LDomain = E[−logDdomain(cx|x)] (5)

where DDomain is the domain discriminator and the cxx
is the input image from specific domain cx.

3.4.1 Overall training objective

Equation (6) denotes the overall training objective of the
network. All encoders, decoders, and discriminators are
jointly trained and then optimized.

LG = LGAN + λxreconLx
recon + λcLcNTIR

recon + λsTIRLsTIR
recon

+λLapLLap + λDomainLDomain (6)

4. Experimental Results
From the results, we aim to observe two factors: the

ability of the generative model to preserve key details in
the original image in the translated image, and the ability
to maintain consistent appearance between query and im-
age candidates, particularly when they are taken at different
times of the day. To quantitatively evaluate the former, we
use the Average Precision Canny Edge (APCE) [17], and for
the latter, we use place recognition performance. Informa-
tion on the dataset and implementation details are included
in the Appendix.

4.1. Thermal image translation

For comparison, we selected CycleGAN [25] and To-
DayGAN [1] as baseline models since they also utilize
image-to-image translation to improve place recognition
performance. Due to the absence of aligned and paired
night-time to daytime thermal image datasets, and the fact
that our GAN translation model is unpaired, quantitative
evaluation metrics such as SSIM, PSNR, and MSE that
require ground truth labels cannot be directly applied to
evaluate our image translation model. Instead, we used
the APCE, which computes the average edge similarity be-
tween the extracted Canny edges of the original min-max
normalized 8-bit thermal image and the translated thermal
images at varying Canny edge thresholds. This metric eval-
uates the edge-guided reconstruction ability, which we be-
lieve is crucial in our proposed approach.

Table 1. Place Recognition Results on NetVLAD and DBoW

Model NetVLAD DBoW
Metric Top-1 Top-5 Top-10 Top-1

Min-max 0.6803 0.8734 0.9421 0.26
CycleGAN 0.5150 0.8069 0.9013 0.06
ToDayGAN 0.5494 0.8112 0.8841 0.25

Ours (asymmetric) 0.7276 0.8951 0.9418 -
Ours (Symmetric 0.8069 0.9506 0.9871 0.46

The results of our image translation model are illustrated
in Fig. 3. In thermal image-based place recognition, it is
crucial to maintain consistent appearance between query
and image candidates, especially when they are taken at
different times of day and there are significant temperature
discrepancies. From a qualitative evaluation, our proposed



Figure 3. Image translation results on images taken from KAIST and Valley sequence of the STheReO dataset. Qualitatively, translation
results using our method achieve consistent image contrasts and preserve key details (red and yellow box) in the translated image.

Figure 4. Precision-Recall curve of all methods. Our method
showed the highest area under the curves.

translation model has achieved better inter-frame inten-
sity consistency compared to both conventional Automatic
Gain Control (AGC)-based (min-max nomralization) meth-
ods and other GAN-based methods. The scene contrast dif-
ferences between daytime and nighttime are less severe in
our translated images. AGC-based images exhibited drastic
contrast changes between images taken at different times of
the day, whereas CycleGAN translations showed less ap-
pearance variation, but with poorer contrast and inconsis-
tency, particularly in the valley images. ToDayGAN alle-
viated some inter-frame consistency problems but produced
artifacts and ambiguous details in the final image (see green
box in Fig. 3).

On the other hand, our proposed method not only
achieved inter-frame consistency and preserved key details
presented in the original thermal images, but it also pro-
vided a wider and more diverse contrast range than other
GAN-based methods. Specifically, the disentanglement of
image enables us to maintain inter-frame intensity consis-
tency of images that were captured at different times of
the day. Furthermore, our method successfully preserves
important features in the original AGC-based images, as
highlighted by the red and yellow boxes. Moreover, in
terms of quantitative evaluation via APCE, our proposed
model demonstrated the highest overall APCE of 0.3643

for the valley sequence, when compared to CycleGAN
(0.1363) and ToDayGAN (0.1000). Thus, these APCE re-
sults demonstrate that our proposed translation model is the
optimal choice at preserving the key details in thermal im-
ages.

4.2. Thermal image-based Place Recognition

We evaluated the performance of our translation model
for place recognition using the STheReO dataset, which
includes image sequences acquired from three locations,
KAIST, SNU, and Valley. We used top-1, top-5, and top-10
recall rates, which measure the ratio of successful retrievals
to the total query size, as the quantitative evaluation met-
ric. The precision-recall curve in Fig. 4 and Table. 1 show
the thermal image-based place recognition recall rate per-
formance evaluated on the STheReO dataset.

Our proposed translation method outperformed other
baseline methods across all evaluation criteria. Specifically,
our symmetric method (See Section 4.3.1) achieved the
highest top-1 recall rate of 80.69%, compared to the con-
ventional baseline of 68.03%. In contrast, the other base-
line methods, ToDayGAN and CycleGAN, had lower recall
rates of 54.94% and 51.50%, respectively. Additionally, our
method had the largest area under the precision-recall curve
in Fig. 4, indicating the highest precision-recall trade-off
among the GAN-based models. We believe that the im-
provement in performance was attributed to the alleviation
of appearance discrepancies between thermal images cap-
tured at different time periods, which was mainly achieved
through the image contrast equalization and edge preserva-
tion capabilities of our proposed GAN model.

4.3. Ablation study

4.3.1 Symmetric vs asymmetric image translation

Our proposed image translation model was trained to equal-
ize the appearance of both night-time and daytime ther-



mal images by minimizing the temperature-based discrep-
ancies between them. However, given that daytime thermal
images already have relatively higher contrast than night-
time images, the necessity for translating both input images
may be questioned. To address this, we introduce a vari-
ation to our place recognition pipeline by only translating
night-time thermal images. This model is referred to as
the asymmetric translation model, as opposed to the sym-
metric translation model that translates both query and key
thermal images into joint representations. Table 1 clearly
shows that the performance of the symmetric translation-
based model is superior to that of the asymmetric method.
One possible explanation for this result is that the symmet-
ric model induces fewer appearance discrepancies between
the translated images compared to the asymmetric model.
This finding reinforces the importance of maintaining inter-
frame consistency in thermal-based place recognition.

4.3.2 Performance on DBoW

In addition to evaluating our translation model with deep
learning-based place recognition methods, we also tested its
performance with DBoW. As indicated in the Table. 1, using
our translation method led to a 46% improvement in the top-
1 recall, compared to the top-1 accuracy of 26% achieved by
min-max-based methods that are commonly used in ther-
mal image-based odometry. This finding suggests that our
translation model can enhance the quality of thermal images
in general, rather than being exclusively designed for deep
learning-based place recognition tasks. Therefore, when
considering real-time performance or inference speed, our
translation model, along with DBoW, can still be utilized to
improve place recognition performance in thermal images.

4.3.3 Use of different latent styles

Figure 5. Image translation results when using different styles

The style code used in our proposed method affects
the translated images and, consequently, the place recog-
nition performance. To examine the effect of using dif-
ferent style codes on place recognition performance, we
randomly sampled five latent styles, translated the thermal
images, and evaluated them on NetVLAD and DBoW. Ta-

Table 2. Place recognition results on the proposed method using
different style latents.

Model NetVLAD DBoW
Metric Top-1 Top-5 Top-10 Top-1
Style 1 0.8069 0.9506 0.9871 0.42
Style 2 0.6867 0.9142 0.9592 0.16
Style 3 0.7082 0.9356 0.9785 0.46
Style 4 0.6094 0.8755 0.9464 0.35
Style 5 0.7639 0.9335 0.9807 0.15

ble. 2 and Fig. 5 demonstrate the quantitative and qualita-
tive evaluations respectively. The results highlight the im-
portance of selecting the correct style code for achieving
high place recognition accuracy, as there is a notable per-
formance gap between different styles. For example, se-
lecting style 1 can yield a top-1 accuracy of 80.69%, while
selecting style 4 can result in a top-1 accuracy as low as
60.94%. The same trend can be applied when using DBoW.
From a qualitative perspective, the highest performing im-
ages retained the edges of the min-max image, indicating
that edge-preservation and high contrast in the translated
images are also crucial factors to consider.

5. Conclusion

In conclusion, our proposed approach has demonstrated
promising results in improving place recognition perfor-
mance in thermal images by mitigating appearance discrep-
ancies caused by differences in temperature. Our findings
suggest a direction for future research in this field, even
without the utilization of state-of-the-art techniques or ad-
vanced methods. However, more work is needed to be done
to further enhance the performance of our method, and the
implementation of an adaptive style selection scheme for
deployment consideration is also necessary. Although we
have shown improvement in performance without state-of-
the-art GAN-based image translation and place recognition
techniques, we believe that further progress can be made
with the use of better methods. Finally, we plan to explore
the integration of contrastive learning-based methods to the
image translation network, but the current lack of studies
on stabilizing contrastive learning in thermal images poses
a challenge.
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6. Appendix A: Implementation Details
6.1. Thermal image translation

6.1.1 Dataset

We used night-time and day-time thermal images from two
publicly available benchmark datasets, namely KAIST [9] and
STheReO [23]. To avoid redundancy in the training images, the
dataset was downsampled by selecting every tenth frame. In to-
tal, the dataset consisted of 8533 night-time and 8717 day-time
thermal images.

6.1.2 Implementation Details

We used a PatchGAN [10] discriminator that consists of four 4×4
convolution. The generator uses a common encoder-decoder ar-
chitecture that consists of content encoder, style encoder, and de-
coder. The content encoder consists of a single 7×7 convolution,
four 4x4 convolution followed by four residual blocks. The style
encoder comprises of a single 7×7 convolution, four 4x4 convolu-
tion followed by a global average pooling operation and fully con-
nected layer. Lastly, the decoder consists of four residual blocks,
two upsampling block, and a single 7×7 convolution at the end.

For training, We used input image with resolution of 640×400.
For the network hyperparameters, we used Adam optimizer with
a learning rate of 0.0001, weight decay of 0.5 and 0.99 as β1 and
β2 respectively. The network was trained for batch size of 1 for
60,000 iterations.

As for the training object parameters, We optimized our
image translation model by carefully selecting and fine-tuning
the weighting coefficients for the loss functions, including
λxrecon , λc, λs, λLap, and λDomain, with values of 20, 10, 10,
20, and 5, respectively. We found that a high weighting coefficient
for the discriminator resulted in convergence failure and mode col-
lapse, while equal weighting for the generator-related losses led to
poor contrast in the translated thermal images. Based on empirical
analysis of hyperparameter tuning, we determined that higher loss
weightings should be applied to the image reconstruction loss to
preserve thermal image characteristics and to the Laplace of Gaus-
sian loss to preserve edge characteristics.

6.1.3 Dataset

Table. 3 outlines the number of images included in the dataset. For
each location, sequences were captured at three different times-
tamps: morning, afternoon, and evening. The dataset also pro-
vides ground truth annotations for place recognition derived from
RTK GNSS ground truth data for each image.

6.1.4 Implementation Details

Following conventions of NetVLAD [2], we used KAIST and Val-
ley sequences for training and validation, respectively, selecting
images from the evening sequence as query and images from the
daytime (morning and afternoon) sequences as database. To elim-
inate redundancy in the training and validation data, we selected

Table 3. STHeReO dataset overview
Training: KAIST / Validation: Valley

Sequences Morning Afternoon Evening
KAIST 1,716 1,730 1,700
SNU 1,795 1,811 1,844

Valley 475 465 466

one image from each sequence at a 2-meter interval. Overall, we
used KAIST sequences (1,700 query images and 3,450 database
images) for training and Valley sequences (466 query images and
944 database images) for validation.

We trained four separate NetVLAD networks on each minmax
AGC images and their corresponding translated images using dif-
ferent image-to-image translation methods (CycleGAN, ToDAY-
GAN, and our proposed model). The images were cropped to
640x400 and a batch size of 16 was used, with SGD optimizer
and a learning rate of 0.0001 and weight decay of 0.5. To prevent
overfitting, we adopted early stopping when there was no accuracy
improvement in the place recognition evaluation for two or more
epochs.
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