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Abstract

Fog represents a customary meteorological phenomenon
capable of exerting a detrimental impact on the efficacy of
computer vision tasks like autonomous driving. Categoriz-
ing fog within images poses considerable challenges, pri-
marily due to the obscuration of key objects by fog, thereby
impeding the determination of their respective categories.
This obscuration, coupled with the resultant reduction in
contrast, further compounds the complexity of the catego-
rization. Therefore, in this paper, we propose a novel vision
Transformer-based network, named FoggyFormer, to ad-
dress the aforementioned challenges. FoggyFormer incor-
porates a distinctive spatial-channel enhancement strategy
to enhance the performance in foggy image categorization
tasks. Firstly, the channel-wise enhancement technique mit-
igates the adverse effects of low contrast prevalent in foggy
images. Secondly, the spatial-wise enhancement employs a
spatial attention mechanism to discern and emphasize the
spatial positions of crucial objects within the foggy images.

To facilitate a comprehensive investigation of the task
at hand, we introduce the Foggy-CODaN dataset, a metic-
ulously curated collection comprising 10,000 samples dis-
tributed across 10 distinct categories. By employing this
dataset, we aim to establish a solid foundation for the sys-
tematic examination of foggy image categorization algo-
rithms. We demonstrate that the proposed FoggyFormer
surpasses the performance of existing vision Transformer
models, thereby achieving state-of-the-art results. The ex-
perimental results substantiate the model’s robust general-
ization capabilities, as evidenced by its proficient handling
of unlabeled real-world driving scenes.

1. Introduction

Vision in adverse weather conditions such as rain, snow,
and haze plays a pivotal role in numerous safety-critical ap-
plications, including autonomous driving [3, 4, 23]. Never-

theless, existing models face substantial challenges in this
domain due to their reliance on training data that predom-
inantly consists of well-conditioned images [21, 22]. Con-
sequently, these models struggle to generalize effectively
when confronted with real-world images exhibiting unfa-
vorable weather conditions [3]. Amongst these challeng-
ing conditions, fog poses one of the most formidable obsta-
cles [19].

Visibility enhancement techniques, encompassing de-
hazing, deraining, and desnowing, have been widely em-
ployed as straightforward approaches in addressing adverse
weather conditions in images [15, 17, 35, 40]. However, re-
cent studies have revealed that image enhancement method-
ologies have the potential to alter the content of the orig-
inal image, thereby potentially impeding high-level com-
puter vision tasks such as categorization [14, 32, 39]. Con-
sequently, in contrast to the conventional visibility enhance-
ment paradigm, we propose an alternative approach that fo-
cuses on learning a robust representation capable of facili-
tating high-level vision tasks in challenging weather condi-
tions.

In this paper, the focus is on the visual categorization of
foggy conditions. The task has significant challenges due to
the presence of extremely low contrast and the obscuration
of key visual cues, such as objects, by the fog (as depicted
in Fig. 1.(a)) [27]. Consequently, the direct learning of a
robust representation becomes problematic [14, 32, 39].

Hence, we propose a spatial-channel enhanced vision
Transformer named FoggyFormer. A channel-wise en-
hancement strategy is proposed to learn representative fea-
tures from low contrast image parts. A spatial-wise en-
hancement is introduced to focus on regions belonging to
scene semantics.

Our proposed task is novel and existing datasets [1, 26,
27] cannot be used to evaluate the task at hand. There-
fore, a novel dataset Foggy-CODaN is created. The Foggy-
CODaN dataset is built based on the Common Objects Day
and Night (CODaN) dataset [12], which contains 10,000
samples from 10 categories in total. The original data is
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Figure 1. (a) Challenges for visual categorization for foggy im-
ages. Low contrast and fuzziness. (b) Pipeline difference between
existing ViT and the proposed FoggyFormer.

modified using Foggy-CycleGAN [37]. We change the
foggy density and provide photo-realistic foggy rendering
effects. Extensive experiments are conducted and show that
the proposed method state-of-the-art performance.

Our contribution is summarized as follows:

• A novel network FoggyFormer is proposed for visual
categorization considering strong foggy conditions.

• A spatial-channel enhancement strategy is proposed
for vision Transformer to learn robust semantics from
foggy images.

• A novel Foggy-CODaN dataset is created which en-
ables a systematic study of the new task.

• Extensive experiments show state-of-the-art perfor-
mance and good generalization of the proposed Fog-
gyFormer.

2. Related Work
Image De-hazing & De-fogging In the past decade,
methods are proposed to leverage convolutional neural net-
works (CNNs) for image de-hazing tasks. Some typical
works include MSCNN [25], DehazeNet [2], AOD-Net
[13], FAMED-Net [38], EPDN [24], and etc. More re-
cently, due to the introduction of vision Transformer, fea-
ture representation are proposed for adverse weather re-
moval [6,18,34]. However, works that focus on fog removal
are still relatively few so far [8, 30].

Also, attention is paid to the development of model-
driven image de-fogging algorithms. Specially, Jiang et

al. [7] leverage depth priors for image fog removal. Liang et
al. [16] propose a defogging method based on bilateral hy-
brid filtering. Hu et al. [5] propose an iterative de-fogging
framework with a physical prior of illumination decompo-
sition. Kang et al. [9] introduce a hyperspectral image de-
fogging pipeline by modeling pre-band reflectance. Liu et
al. create a large-scale real-captured image de-fog dataset
[19]. Zhou et al. propose a de-hazing framework by using a
polarization light model [40].

Vision Tasks under Foggy Conditions There are multi-
ple benchmarks for vision tasks under haze conditions. For
example, UG 2+ Challenge Track 2 is a 2-D object detec-
tion dataset under hazy conditions [20,33]. Five object cate-
gories, namely, car, bus, bicycle, motorcycle and pedestrian,
are considered. NYU-depth-V2 [28] is a depth estimation
dataset. Its synthesized version [11] is especially designed
for the estimation of haze. However, a dataset, focusing on
foggy conditions, is still rare.

For foggy conditions, Sakaridis et al. [26] focus on se-
mantic segmentation and object detection in foggy scenar-
ios, and proposed a Foggy CityScapes dataset. More re-
cently, a semantic segmentation dataset from real-world
scenarios, Adverse Conditions Dataset with Correspon-
dences (ACDC) [27], is proposed. It can benchmark the
semantic segmentation not only for foggy conditions, but
also for rain, snow and nigh-time. PTAW172Real [1] is a
person tracking dataset of real-world sequences, under fog,
rain and snow conditions.

However, so far, there is no dataset available that can be
used to systematically benchmark the performance of meth-
ods for foggy conditions.

Vision Transformer Due to the self-attention mecha-
nism to capture long-dependencies and high-level seman-
tic information, it is shown that vision Transformer (ViT)
have stronger feature representation capabilities than con-
volutional neural networks (CNN) [31]. A variety of ad-
vanced vision Transformer models are proposed, e.g., BiT
[10], DeiT [29], Metaformer [36]. More recently, Swin
Transformer [22] and its updated versions [21] demonstrate
stronger feature representation capabilities [31].

In conclusion, so far, only a few methods investigated
the performance of vision Transformers under foggy condi-
tions.

3. Foggy-CODaN Dataset

3.1. Dataset Overview & Statistics

We propose a Foggy-CODaN dataset to benchmark the
new task. It uses the Common Objects Day and Night (CO-
DaN) dataset [12] and rendered by Foggy-CycleGAN.
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Figure 2. (a) Some selected samples for each category in the Foggy-CoDaN dataset, namely, bycicle, boat, bottle, bus, car, cat, chair, cup,
dog and motorbike; (b) illustration of modifying the foggy density parameter and its visual effect on the rendered foggy images.

Common Objects Day and Night (CODaN) is an image
categorization dataset, which consists of 10 common object
categories from a variety of day and night conditions [12].
For each category, it has 1,000 training images, and 600
testing images in total.

Ten object categories in this dataset are bycicle, boat,
bottle, bus, car, cat, chair, cup, dog and motorbike, respec-
tively.

3.2. Rendering Details

Foggy-CycleGAN [37] uses CycleGAN [41] to synthe-
size foggy conditions in images. Apart from the default pa-
rameters of CycleGAN, an additional parameter foggy den-
sity (denoted by d) steers the density of the fog in an im-
age. We use the official software package 1 of the Foggy-
CycleGAN [37] for rendering.

Some examples with changing the foggy density d on the
same image are shown in Fig. 2. It is shown that a change
in parameter d corresponds to the fog density in the image.
The higher d, the stronger the foggy effect is in the image.

3.3. Evaluation Metrics

Both overall accuracy (OA) and average accuracy (AA)
are used as the evaluation metrics.

The overall accuracy is the ratio between the number
of correctly categorized images and the number of all the
images. The average accuracy is the average of the per-
category accuracy. For per-category accuracy, it is the ratio
between the number of correctly categorized images of a
certain category and the number of the images in this cate-
gory.

4. Methodology
4.1. Framework Overview

Fig. 3 shows the proposed spatial-channel enhanced
Transformer for visual categorization under the foggy
condition. After feature extraction, using Swin-Tiny as
backbone [22], the method consists of three components,
namely, channel-wise enhancement, spatial-wise enhance-
ment, and channel-spatial enhanced feature fusion.

4.2. Channel-wise Enhancement

Given the low contrast in foggy images, the challenge
is how to enhance the features of the key objects. To this
end, we propose a channel-wise enhancement strategy for
the foggy images. The first step is to normalize the fea-
ture representation in a channel-wise manner, so that the
channel-wise difference are magnified. The second step is
to implement channel-wise attention of the normalized fea-
ture maps, so that the per-channel contribution of the feature
maps, determining the object category, can be measured.

Specifically, given the feature representation X ∈
R(W ·H)×C from the backbone, for the first step, an instance
normalization is conducted, denoted by

X
′(W ·H),c =

X(W ·H),c − µ

σ + ϵ
· γ + β, (1)

µ =
1

C

C∑
c=1

X(W ·H),c, σ =

√√√√ 1

C

C∑
i=1

(X(W ·H),c − µ)2,

(2)
where c = 1, 2, · · · , C. Here W , H and C denote the
width, height and channel size of the feature map X.

For the second step, a channel-wise attention is com-
puted on the refined feature map X

′
, to measure the im-

portance of each channel in determining the scene category.
1https://github.com/ghaiszaher/Foggy-CycleGAN
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Figure 3. Framework of the proposed Foggy-Former. After feature extraction using Swin-Tiny as backbone, there are three key steps
involved. The first step is the channel-wise enhancement, which learns a channel-wise weight matrix to tolerate low contrast in foggy
images. The second step is the spatial-wise enhancement, which highlights the spatial position of the key object in images. In the third
step, both weight matrices are fused to generate a final prediction.

The channel-wise weight matrix A1 ∈ R(W ·H)×1 is com-
puted by

A1 = Sigmoid(W1X
′
+ b1), (3)

where W1 ∈ R(W ·H)×1 and b1 ∈ R(W ·H)×1 are the
weight and bias matrix of a linear layer. Sigmoid denotes
the Sigmoid activation function.

4.3. Spatial-wise Enhancement

Due to the poor visibility caused by fog, usually only a
limited number of parts of the key objects may appear in
foggy images. Hence, it is particularly important to high-
light these regions in foggy images. This objective is re-
alized in a simple and straight-forward way. We reshape
the normalized feature X′ ∈ R(W ·H)×C into the organiza-
tion manner of convolutional features, as X′ ∈ RW×H×C .
Then, an one-layer spatial attention module is used to ex-
tract the attention weight matrix A2 ∈ RW×H×1, which
highlights the parts of the key objects. This process is de-
fined by

A2 = Sigmoid(W2 ⊗X
′
+ b2), (4)

where ⊗ denotes the convolutional operation function.
W2 ∈ RW×H×1 and b2 ∈ RW×H×1 denote the weight
and bias matrix of the convolutional layer.

4.4. Channel-spatial Enhanced Feature Fusion

Both the channel-wise and spatial-wise attention matrix
are used to enhance the feature representation. In this way,

low contrast is tolerated and the spatial positions of the key
objects are emphasized. This fusion process is given by

Xfinal = A2A1X
′
, (5)

where Xfinal is the final feature representation that is used
for visual categorization.

Then, after processing Xfinal into a category-wise prob-
ability vector, the conventional cross-entropy loss function
is used to optimize the entire framework in an end-to-end
manner.

5. Experiments

5.1. Implementation Details

The Swin-tiny Transformer [22] uses the pre-trained
weights of ImageNet as initial parameters. A random ini-
tialization is used to initialize the parameters of the rest part
of the FoggyFormer.

The experiments are conducted on two GeForce RTX
2080 Ti GPUs. The batch size is set 2 per GPU. The Adam
optimizer is used with an initial learning rate of 1 × 10−4.
The weight decay is set 0.05. The training terminates after
50 epochs.

5.2. Comparison with Existing Methods

We compare the proposed FoggyFormer with a number
recent vision Transformer models on the proposed Foggy-
CoDaN dataset, including ViT [31], BiT [10], DeiT [29],
Swin [22] and Swin-V2 [21].



Method Year param. FLOPs bicycle boat bottle bus car cat chair cup dog motorbike AA OA
ViT [31] 2017 307M 190.7G 81.48 95.35 83.67 90.38 90.91 90.00 82.14 85.71 93.33 85.45 87.84 87.53
BiT [10] 2020 44M 8.3G 88.00 94.12 90.70 97.96 91.67 87.50 87.50 86.67 81.13 87.04 89.23 89.13
DeiT [29] 2021 86M 55.4G 94.12 97.83 90.00 100.00 90.74 92.31 93.48 91.84 93.75 96.08 94.01 93.96
Swin [22] 2021 197M 103.9G 95.83 97.96 95.74 98.04 97.96 90.74 93.75 90.00 97.87 92.59 95.05 94.97

Swin-V2 [21] 2022 197M 104.3G 82.69 95.24 78.43 98.04 95.65 91.67 78.18 84.00 89.80 88.68 88.24 87.93
Ours 2023 198M 104.1G 96.00 100.00 92.00 96.15 100.00 98.04 97.96 93.88 100.00 96.15 97.02 96.98

Table 1. Performance comparison of the proposed FoggyFormer with a number of state-of-the-art vision Transformer models on the Foggy-
CoDaN dataset. Evaluation metrics include per-category accuracy, average accuracy (AA) and overall accuracy (OA). All these metrics
are presented in percentage (%). The comparison is evaluated for an image size of 384×384.

Overall accuracy & average accuracy The last two
columns of Table 1 report the overall accuracy (OA) and
average accuracy (AA) of the proposed FoggyFormer and
the other vision Transformer models.

Our method outperforms the second best method Swin
Transformer [22] by 1.97% and 2.01% in terms of the aver-
age accuracy and the overall accuracy, and reaches 97.02%
and 96.98% in terms of the average accuracy and the overall
accuracy. In contrast, ViT [31], BiT [10] and Swin-V2 [21]
only achieves an average accuracy of 87.84%, 89.23% and
88.24%, respectively. Also, their overall accuracy metric
is 87.53%, 89.13% and 87.93%, which is also far behind
the 96.98% achieved by FoggyFormer. The more than 10%
accuracy performance gain of the proposed FoggyFormer
against the existing vision Transformer models is notewor-
thy for autonomous driving in foggy conditions.

Per-category performance Table 1 reports the per-
category accuracy of the proposed FoggyFormer and the
compared vision Transformer models. The proposed Fog-
gyFormer shows the best classification performance on
eight out of ten object categories. Compared with the sec-
ond best classification method, the proposed FoggyFormer
shows a performance gain of 0.17% on bicycle, 2.04% on
boat, 2.04% on car, 5.73% on cat, 4.21% on chair, 2.04%
on cup, 2.13% on dog and 0.07% on motorbike. However,
on the bottle and bus category, its performance is somewhat
inferior to one or several vision Transformer models.

Notably, the performance gain in the foggy conditions on
categories such as car is also important for the application
of autonomous driving.

Computational Cost We also compare the proposed Fog-
gyFormer against existing vision Transformer models. It
only leads to a 1M parameter number gain and 0.2G in-
crease of FLOPs, when compared with the backbone Swin
Transformer. Its parameter number and FLOPs are sim-
ilar to Swin-V2 [21], and are much smaller than that of
ViT [31].

Although BiT [10] and DeiT [29] models have much
less parameters and GFLOPs, these two models are actu-
ally based on a hyrid CNN-ViT paradigm and use CNN to

Component Metric (%)
Backbone CE SE AA OA

✓ 95.05 94.97
✓ ✓ 95.91 95.86
✓ ✓ 96.37 96.28
✓ ✓ ✓ 97.02 96.98

Table 2. Ablation studies for each component of the proposed PN-
Former. CE / SE: channel-wise enhancement / spatial-wise en-
hancement. Evaluation metrics average accuracy (AA) and overall
accuracy (OA) are presented in percentage (%).

extract features. Also, their performance in terms of both
average accuracy and overall accuracy shows a great decline
(>9%) against the proposed FoggyFormer.

5.3. Ablation Studies

Table 2 provides an ablation study for each component of
the proposed FoggyFormer. The channel-wise enhancement
and the spatial-wise enhancement are denoted as CE and
SE, respectively.

It is shown that both the channel-wise enhancement and
spatial-wise enhancement provides a positive impact on
the proposed framework. Compared to the baseline, the
channel-wise enhancement leads to a performance gain of
0.86% and 0.89% on average accuracy and overall accu-
racy, respectively. In contrast, the spatial-wise enhancement
leads to a performance gain of 1.32% and 1.31% on average
accuracy and overall accuracy, respectively. The joint use
of both enhancement leads to a performance gain of 1.97%
and 2.01% on average accuracy and overall accuracy, re-
spectively.

5.4. Inference on Real-world Images

It is practical to validate the generalization ability of the
proposed FoggyFormer and the proposed Foggy-CoDaN
dataset on driving scenarios. To this end, we directly use
the FoggyFormer pre-trained on Foggy-CoDaN to infer
the category-wise prediction on some un-labeled real-world
foggy images. The output is the 10-dimensional probabil-
ity distribution for each individual category. The results are



Figure 4. Some real-world un-labeled image inference of the proposed FoggyFormer after pre-trained on the Foggy-CoDaN dataset. The
probability distribution of the ten categories is visualized by a histogram.

shown in Fig. 4.

It can be derived that, in both foggy road scenarios and
foggy river scenarios, the probability response of car or boat
is very high, and is nearly close to 1. In contrast, the other
object categories have very little chance to obtain a clear
probability estimation. It indicates that the FoggyFormer
pre-trained on the proposed Foggy-CoDaN dataset has a
good generalization ability on real-world driving scenes.

6. Conclusion

In this paper, the task of visual categorization under the
foggy condition is considered. For this task, a FoggyFormer
is proposed using a spatial-channel enhancement strategy
to highlight the semantic information in foggy images. To
benchmark this task, a Foggy-CoDaN dataset is collected.
Extensive experiments show state-of-the-art performance of
the proposed FoggyFormer. In addition, the reasonable cat-
egorization inference on real-world unlabeled images shows
good generalization of the FoggyFormer and the Foggy-
CoDaN dataset. As future research, the method is further
explored on driving scenes under foggy conditions.
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