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Abstract

Generalizability is highly demanded for semantic seg-
mentation, especially for real world applications such as
autonomous driving. Although Vision Transformers (ViT)
have shown their potential in different computer vision ap-
plications compared to CNN-based methods, they are rarely
used in the domain of generalized segmentation.

Therefore, in this paper, we propose a novel instance
normalization Transformer (INFormer). To the best of our
knowledge, instance normalization has not been explored
so far using patch-wise ViT embeddings. To this end, we
propose a progressive normalization strategy, which applies
normalization in both the encoding and decoding stages.
After feature encoding, the image representation is directly
implemented using instance normalization. During the de-
coding stage, the image features for each scale are nor-
malized and fused into the Transformer decoder in a pro-
gressive manner. Large-scale experiments, considering a
variety of driving-scene scenarios, show that the proposed
INFormer significantly outperforms existing CNN based do-
main generalized semantic segmentation methods by up to
12.79% mIoU.

1. Introduction

Semantic segmentation in driving scenarios is partic-
ularly challenging because the environment may change
drastically including changes in weather and lighting con-
ditions, and variations in landscapes [2, 6, 20, 32]. Ex-
isting segmentation models are usually trained on well-
illuminated datasets and are therefore they may not be ro-
bust in other domains. Domain generalized semantic seg-
mentation [4, 11, 22] benchmarks are thus proposed to sys-
tematically study this problem.

Vision Transformers (ViT’s) show stronger feature gen-
eralization capabilities than CNN’s [7, 16, 17]. Recently,
ViT is applied successfully in semantic segmentation in-
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Figure 1. The proposed Instance Normalization TransFormer
(INFormer) is a VIT based domain generalized segmentation
method for driving scenes. It shows a significant performance gain
compared to CNN based domain generalized segmentation meth-
ods, e.g., ISW [4].

cluding typical methods such as SegFormer [36] and
Mask2Former [3]. However, existing domain generalized
semantic segmentation approaches heavily rely on convo-
lutional neural networks (CNN’s) [4, 11, 22–24, 24, 37]. So
far ViT has not be explored in the domain of generalized
semantic segmentation.

While Instance Normalization (IN) is well researched
using CNN’s, it has not been explored by ViT’s [11,22,24].
Therefore, in this paper, a novel Instance Normalization
TransFormer (INFormer) is proposed for domain general-
ized semantic segmentation. Firstly, the feature embedding
from the transformer encoder is implemented with the IN
transformation. It allows the high-level feature embedding
to be more robust to the style variation. Then, in the decod-
ing stage, the image features of each scale are implemented
by the instance normalization, and progressively fused into
the Transformer decoder. In this way, the IN keeps playing
its role during the up-sampling process, so that more gener-



×
3

2

×
1

6

×
8

×
4

I 
N

I 
N

I 
N

I 
N

… …

… …

Pixel Decoder

query

Transformer Decoder

…

IN: instance normalization

Backbone

Encoding Normalization

Decoding Normalization

Figure 2. An overview of the training pipeline for the proposed
IN Transformer (INFormer). The key idea is that the IN is used
in both the encoding and decoding stage, and the fusion in the
decoding stage is in a progressive manner.

alized high resolution dense predictions are made.
Large-scale experiments for different domain general-

ized segmentation scenarios show that the proposed IN-
Former outperforms state-of-the-art CNN based methods by
a large margin i.e. 12.79% mIoU improvement. In addi-
tion, ablation studies show the necessity of implementing
IN transformation repeatedly in the encoding and decod-
ing stages. The visualized prediction in the target domains
demonstrates the reliability of the proposed INFormer for
domain generalized segmentation, compared to existing
state-of-the-art CNN based methods.

Our contribution is summarized as follows.

• To the best of our knowledge, this is the first approach
using ViT for domain generalized semantic segmenta-
tion.

• We propose a Instance Normalization TransFormer
(INFormer) for the domain generalization semantic
segmentation task.

• Extensive experiments show that the proposed IN-
Former leads to a 12.79% mIoU improvement com-
pared to existing CNN based domain generalized se-
mantic segmentation methods.

2. Related Work
Domain Generalization Extensive efforts of domain
generalization under no task-specific scenarios are made
in both machine learning and computer vision community.
Specifically, Zhou et al. [44] provide an extensive summary
of domain generalization on a variety of vision tasks. Dou
et al. [8] introduce a model-agnostic learning scheme to
preserve domain generalized semantic features. Harary et
al. [9] consider the domain generalization in an unsuper-
vised manner by learning a domain bridge. Hu et al. [10]

propose a domain generalization framework for image re-
trieval in an unsupervised setting. Zhou et al. [45] propose a
framework to generalize to new homogeneous domains. Xu
et al. introduces a domain generalization method based on
a Fourier-based augmentation strategy and a dual-formed
consistency loss. Qiao et al. [29] and Peng et al. [26] in-
vestigate how to learn domain generalization from a single
source domain.

Meanwhile, methods such as entropy regularization
[41], common-specific low-rank decomposition [27], casual
matching [18], extrinsic-intrinsic interaction [35], balance
invariance [1], batch normalization embeddings [33] and
multiple latent domain modeling [19] are proposed.

Domain Generalized Semantic Segmentation Domain
generalized semantic segmentation can be regarded as a
boarder extension of the prior unsupervised domain adap-
tion segmentation task [24, 25, 39], but demands more gen-
eralization ability of a model on a variety of target domains.

Despite some efforts on leveraging in-the-wild images
[28], scribble images [34] and multi-source images [13, 14]
for domain generalized segmentation, most attention in the
vision community is still in generalized segmentation under
driving-scenes [5, 21, 30, 31, 38].

Generally, domain generalization segmentation models
use either normalization transformation (e.g., IBN [22], in-
stance normalization [11], SAN [24]) or whitening transfor-
mation (e.g., IW [23], ISW [4], DIRL [37], SAW [24]) on
the training domain, so that the model can better generalize
on the target domains. Other more advanced domain gen-
eralization segmentation methods usually leverage external
images for more diverse styles [15, 42, 43], or leverage the
content consistency on multi-scale features [40].

3. Methodology
3.1. Encoding Normalization

Assume that the image feature from a Transformer en-
coder is denoted as X ∈ R(W ·H)×C , where C is the number
of channels. Along the channel-wise, X can be divided by
X = [X(W ·H),1, · · · ,X(W ·H),C ].

The instance normalization is computed on X so that the
feature representation of each individual channel is normal-
ized. This process is defined by

X
′(W ·H),c =

X(W ·H),c − µ

σ + ϵ
· γ + β, (1)

µ =
1

C

C∑
c=1

X(W ·H),c, σ =

√√√√ 1

C

C∑
i=1

(X(W ·H),c − µ)2,

(2)
where c = 1, 2, · · · , C.
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Figure 3. Technical framework of the proposed Instance Normalization TransFormer (INFormer) for domain generalized semantic seg-
mentation. The Swin-B backbone and the Multi-scale deformable attention decoder are directly inherited from the Mask2Former segmenta-
tion backbone [3]. To learn generalized features, the features after encoding and decoding are both computed by the instance normalization.
In the Transformer decoding stage, all image features for each scale are normalized, and are progressive fused into the Transformer decoder
(in black, blue and green arrow.)

The features after normalization are fed into the Trans-
former decoder for subsequent processing, denoted by
X

′
= [X

′(W ·H),1, · · · ,X′(W ·H),C ].

3.2. Decoding Normalization

Modern vision Transformers (ViT) focus on the self-
attention mechanism for stronger feature representations.
For the segmentation task, the common paradigm (e.g., Seg-
Former [36], Mask2Former [3]) is to extract features for
dense prediction from a set of masks. To learn masks pre-
serving more generalized features, the normalized features
are used as input.

Let Xl ∈ RN×C denote the features of the lth layer in
a Transformer decoder, where N is the number of semantic
categories. Then, a standard masked self-attention mecha-
nism for segmentation is computed as

Xl = softmax(Ml−1 +QlK
T
l )Vl +Xl−1, (3)

where Ml−1 is a binary mask to filter the foreground re-
gions of an image, as detailed in [3]. Also, Ql ∈ RN×C de-
note the query features transformed from Xl−1. Kl,Vl ∈

R(W ·H)×C denotes the key and value for Xl−1. They are
both computed for a certain image feature from the pixel
decoder. For simplicity and clarity, in this subsection, the
image feature (for Kl,Vl) before and after instance normal-
ization is denoted by Fl and F′

l, respectively. This process
is computed as

F
′(W ·H),c
l =

F
(W ·H),c
l − µF

σF + ϵ
· γ + β, (4)

µF =
1

C

C∑
c=1

F
(W ·H),c
l , σF =

√√√√ 1

C

C∑
c=1

(F
(W ·H),c
l − µF )2.

(5)
Then, based on F′

l, two linear layers fk
l and fv

l are used
to computed the key and value. It allows the key and value
to carry more normalized image features. Let K′

l and V′
l

denote the key and value from the normalized image fea-
tures. This computation is given by

K′
l = fk

l (F
′
l), (6)

V′
l = fv

l (F
′
l). (7)



Then, in the proposed ViT for domain generalized seg-
mentation, the masked self-attention mechanism is defined
by

Xl = softmax(Ml−1 +QlK
′T
l )V

′

l +Xl−1, (8)

where X0 is the output from the Transformer encoder,
which is denoted by X

′
in Sec. 3.1.

3.3. Progressive Normalized Fusion

The pixel decoder utilizes the off-the-shelf multi-scale
deformable attention Transformer (MSDeformAttn) [46]
with the default setting in [3, 46]. By using X

′
(in Sec. 3.1)

with a 1/32 resolution as input, every 6 MSDeformAttn lay-
ers are taken to progressively up-sample the image features
into 1/32, 1/16, 1/8, and 1/4, respectively. The decoded
1/32, 1/16, 1/8 feature maps are denoted as F×32, F×16,
F×8, respectively. The 1/4 resolution feature map is di-
rectly utilized for per-pixel embedding.

Assume F×32, F×16 and F×8 correspond to the key and
value of {V×32,K×32}, {V×16,K×16} and {V×8,K×8},
respectively. Following Eqs. 4, 5, 6 7, the normal-
ized key and value is generated by {V′×32,K

′×32},
{V′×16,K

′×16} and {V′×8,K
′×8} , respectively.

The Transformer decoder consists of 9 layers, where
L = 0, 1, · · · , 8. The feature propagation follows the pro-
cedure of Eq. 3, but each layer is fed into the normalized
key and query. The leverage of the multi-scale image fea-
tures is through a progressive manner. The image features
from ×32, ×16 and ×8 are subsequently embedded into the
Transformer decoder in an end-to-end manner, given by

Xi = softmax(Mi−1+Qi−1K
′×32T)V

′×32+Xi−1, (9)

Xj = softmax(Mj−1 +Qj−1K
′×16T)V

′×16 +Xj−1,
(10)

Xk = softmax(Mk−1 +Qk−1K
′×8T)V

′×8 +Xk−1,
(11)

where i = 1, 4, 7, and j = 2, 5, 8 and k = 3, 6, 9.

3.4. Network Architecture and Implementation

The overall framework is shown in Fig. 3. As our
method intends to exploit the possibility of vision Trans-
former (ViT) for this task, we use the Mask2Former [3] as
the feature extractor with a backbone of Swin-Transformer
[17]. The pre-trained model from ImageNet is utilized as
the initial weight parameters. The 1/4 resolution feature
map is fused with the features from the Transformer de-
coder for dense prediction.

All experiments are conducted on a work station with
64GB memory, an Intel® Core™ i7-10700K CPU and two
GeForce RTX 2080 Ti GPUs. The batch size is set 2 per
GPU. The Adam optimizer is used with an initial learning

rate of 1×10−4. The weight decay is set 0.05. The training
terminates after 50 epochs.

Following the default setting of Mask2Former [3], the
final loss function L is a linear combination of binary cross-
entropy loss Lce, dice loss Ldice, and the classification loss
Lcls, given by

L = λceLce + λdiceLdice + λclsLcls, (12)

where the hyper-parameters λce = λdice = 5.0, λcls = 2.0
keep the default as Mask2Former without any tuning.

4. Experiments
4.1. Dataset & Evaluation Protocols

Considering existing methods of domain generalization
segmentation for driving-scenes, five semantic segmenta-
tion datasets are used in our experiments.

Specifically, CityScapes [5] provides 2,975 and 500
well-annotated samples for training and validation, respec-
tively. These driving-scenes are captured in tens of Ger-
many cities with a high resolution of 2048×1024.

BDD-100K [38] also provides diverse urban driving
scenes with a resolution of 1280×720. 7,000 and 1,000
well-annotated samples are provided for training and val-
idation of semantic segmentation, respectively.

Mapillary [21] is also a real-world large-scale semantic
segmentation dataset with 25,000 samples from a variety of
samples.

SYNTHIA [31] is large-scale synthetic dataset, and pro-
vides 9,400 images with a high resolution of 1280×760 for
semantic segmentation.

GTA5 [30] a synthetic semantic segmentation dataset
rendered by the GTAV game engine. It provides
24,966 simulated urban-street samples with a resolution of
1914×1052.

For clarity, we use C, B, M, S and G to denote these five
datasets, respectively.

Following prior urban-scene domain generalized seman-
tic segmentation works [4, 22–24], the segmentation model
is trained on only one dataset as the source domain, and is
validated on the rest of the four datasets as the target do-
main. Two settings include: 1) G to C, B, M, S; and 2) C to
B, M, G, S. mIoU (in percentage %) is used as the validation
metric.

For fair comparison between each CNN based domain
generalized segmentation methods, all the reported perfor-
mance is directly cited from prior works under the ResNet-
50 backbone [4, 22–24].

4.2. Comparison with State-of-the-art

CityScapes Source Domain Table 1 reports the perfor-
mance of the proposed INFormer on target domain of B,



Method Proc. & year Trained on Cityscapes (C)
→ B → M → G → S

IBN [22] ECCV2018 48.56 57.04 45.06 26.14
IW [23] CVPR2019 48.49 55.82 44.87 26.10

Iternorm [12] CVPR2019 49.23 56.26 45.73 25.98
DRPC [40] ICCV2019 49.86 56.34 45.62 26.58

ISW [4] CVPR2021 50.73 58.64 45.00 26.20
GTR [25] TIP2021 50.75 57.16 45.79 26.47
DIRL [37] AAAI2022 51.80 - 46.52 26.50

SHADE [42] ECCV2022 50.95 60.67 48.61 27.62
SAW [24] CVPR2022 52.95 59.81 47.28 28.32

WildNet [15] CVPR2022 50.94 58.79 47.01 27.95
AdvStyle [43] NIPS2022 - - - -

Ours 2023 58.50 71.61 56.43 41.11

Table 1. Performance comparison of the proposed INFormer and
other CNN based domain generalization segmentation methods
under the setting of: C→{B, M, G, S}. Evaluation metric mIoU is
given in percentage (%).

M, G and S, respectively, after trained on the source do-
main C. The proposed INFormer shows a performance gain
of 5.55%, 10.94%, 7.82% and 12.79% mIoU on the B,
M, G and S dataset against the state-of-the-art CNN based
method.

As the BDD100K dataset contains many nigh-time
urban-street images, it is particularly challenging for exist-
ing urban-scene domain generalized segmentation methods.
Still, a performance gain of 5.55% is obtained by the pro-
posed INFormer.

GTA5 Source Domain Table 2 reports the performance
of the proposed INFormer on target domain of C, B, M and
S, respectively, after trained on the source domain G. The
proposed INFormer shows a performance improvement of
9.87%, 10.70%, 13.58% and 12.08% against the existing
state-of-the-art CNN based method on the C, B, M and S
dataset, respectively.

These outcomes further demonstrate the strong feature
generalization nature of the proposed INFormer. The train-
ing domain GTA5 is a synthetic segmentation dataset. Even
if trained on the synthetic data, the proposed INFormer
still shows the strongest performance on multiple real-world
datasets, such as cityscapes (C) and BDD-100K (B).

Parameter Number & GFLOPs Under the C→S set-
ting, the parameter number (denoted as Para. num.) and
GFLOPs of existing CNN based domain generalized meth-
ods are further compared with the proposed INFormer.

It can be derived from Table 3 that, although the use of
ViT as feature extractor doubles the parameter number and
halves the GFLOPs, it leads to a mIoU performance gain
of 14.61% and 14.91% against DIRL [37] and ISW [4], re-
spectively.

Method Proc.& year Trained on GTA5 (G)
→ C → B → M → S

IBN [22] ECCV2018 33.85 32.30 37.75 27.90
DRPC [40] ICCV2019 37.42 32.14 34.12 28.06

IW [23] CVPR2019 29.91 27.48 29.71 27.61
Iternorm [12] CVPR2019 31.81 32.70 33.88 27.07

ISW [4] CVPR2021 36.58 35.20 40.33 28.30
GTR [25] TIP2021 37.53 33.75 34.52 28.17
DIRL [37] AAAI2022 41.04 39.15 41.60 -

SHADE [42] ECCV2022 44.65 39.28 43.34 -
SAW [24] CVPR2022 39.75 37.34 41.86 30.79

WildNet [15] CVPR2022 44.62 38.42 46.09 31.34
AdvStyle [43] NIPS2022 39.62 35.54 37.00 -

Ours 2023 54.52 49.98 59.67 43.42

Table 2. Performance comparison of the proposed INFormer and
other CNN based domain generalization segmentation under the
setting of: G→{C, B, M, S}. Evaluation metric mIoU is presented
in percentage (%).

Method Backbone GFLOPs Para. num. mIoU (%)
IBN [22]

ResNet-50

554.31 45.08 26.14
IW [23] 554.31 45.08 26.10
ISW [4] 554.31 45.08 26.20

DIRL [37] 554.98 45.41 26.50
INFormer Mask2Former 223.37 107.21 41.11

Table 3. Comparison of parameter number, GFLOPs and mIoU
of the proposed INFormer with some existing CNN based domain
generalized methods. all the statistics are reported under the set-
ting of: C→{B, M, G, S}.

4.3. Ablation Studies

Table 4 provides an ablation study on each component
of the proposed INFormer. On top of the segmentation net-
work Mask2Former [3], two components are considered,
namely, instance normalization in the encoding stage (de-
noted as EN) and instance normalization in the decoding
stage (denoted as DN), respectively.

The EN component leads to a performance gain of
1.35%, 1.85%, 1.02% and 1.97% on B, M, G and S target
domain, respectively. The DN component leads to a perfor-
mance gain of 2.58%, 4.07%, 1.37% and 2.89% on B, M, G
and S target domain, respectively. The normalization in the
decoding stage is more significant than the encoding stage.

4.4. Visualization

Some segmentation prediction results on the target do-
mains are shown in Fig. 4. Compared to the CNN based do-
main generalized segmentation methods, the proposed IN-
Former shows a better segmentation prediction, especially
in terms of the completeness of objects. Hence, the ViT
based framework has promising application value in the do-
main generalized segmentation task.

These outcomes indicate that, for safety-crucial applica-
tions such as autonomous driving, when deploying domain
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Figure 4. Segmentation prediction of existing CNN based domain generalized semantic segmentation methods (IBN [22], IW [23], Iternorm
[12], ISW [4]) and the proposed INFormer on the images from unseen target domains.

Component Trained on CityScapes (C): mIoU (%)
Mask2Former EN DN → B → M → G → S

✓ 55.43 66.12 55.05 38.19
✓ ✓ 56.78 67.97 56.07 40.16
✓ ✓ 58.01 70.19 56.42 41.08
✓ ✓ ✓ 58.50 71.61 56.43 41.11

Table 4. Ablation studies on each component of the proposed IN-
Former under the setting of: C→{B, M, G, S}. EN / DN: instance
normalization in the Transformer encoding / decoding stage. Eval-
uation metric mIoU is presented in percentage (%).

generalized segmentation algorithms, ViT based methods
are preferred.

5. Conclusion & Limitation Discussion
In this paper, we investigate the possibility to adapt the

vision Transformer for the task of domain generalized se-
mantic segmentation. An instance normalization Trans-
former (INFormer) is proposed for this task. The key idea
is that the feature embeddings in ViT are normalized dur-
ing both the encoding and decoding stage in a progressive
manner. Extensive experiments on multiple domain gener-
alized segmentation settings show the superior performance
of the proposed INFormer against existing CNN based do-
main generalized segmentation methods. Moreover, the vi-
sualization also shows the superior qualitative inference of
the proposed INFormer than existing methods.

Limitation discussion. As the feature extraction
pipeline of ViT and CNN is quite different, the proposed
progressive normalization strategy needs to calculate the

key and value for the self-attention mechanism. Thus, it is
not directly applicable to existing CNN based domain gen-
eralized segmentation pipelines. Nevertheless, its effective-
ness against the baseline is demonstrated by the ablation
study. Performance superiority against existing CNN based
domain generalized segmentation methods is shown.
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