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Abstract

Speed estimation of an ego vehicle is crucial to enable
autonomous driving and advanced driver assistance tech-
nologies. Due to functional and legacy issues, conventional
methods depend on in-car sensors to extract vehicle speed
through the Controller Area Network (CAN) bus. However,
it is desirable to have modular systems that are not suscep-
tible to external sensors to execute perception tasks. In this
paper, we propose a novel 3D-CNN with masked-attention
(3DCMA) architecture to estimate ego vehicle speed using
a single front-facing monocular camera. To demonstrate
the effectiveness of our method, we conduct experiments
on two publicly available datasets, nulmages and KITTI.
We additionally introduce a synthetic dataset for ego vehi-
cle speed estimation (SEVS dataset) that bridges the gaps
in the existing real-world datasets. Our method outper-
forms the current state-of-the-art architecture for video vi-
sion by 27% and 34% in nulmages and KITTI datasets, re-
spectively. We also demonstrate masked-attention’s efficacy
by comparing our method with a traditional 3D-CNN. Our
method achieved an error reduction of 23% and 25% for the
datasets mentioned above when compared against 3D-CNN
without masked-attention.

1. Introduction

The impact of electric vehicles today in contributing to
an energy-efficient and sustainable world is immense [19].
It is a significant influencing factor in the global push
against climate change. To this end, self-driving vehicles
add further value in enabling smart mobility, planning, and
control for intelligent transportation systems. According
to [31]], predicting the ego vehicle speed reduces fuel con-
sumption and optimizes cruise control [30].

Autonomous cars use stereo cameras, LIDAR (Light De-
tection and Ranging), and radars to estimate the speed of the
ego vehicle and other vehicles. The combination of these

sensors gives great accuracy leading to meticulous naviga-
tion to avoid crashes and ensure the safety of the vehicle and
its surrounding. Camera-LiDAR fusion exploits the video
stream and 3D point clouds simultaneously to get depth in-
formation of objects around the vehicle. Thus, the vehicle
speed can be estimated from the multitude of features learnt
using multiple sensor modalities. However, such multi-
sensor dependant systems are not cost effective.
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Figure 1. Estimation of ego-vehicle speed (green) using a contin-
uous camera stream

So far, very little work has been done on speed estima-
tion of a moving car using monocular camera. An exam-
ple of ego-vehicle speed estimation using camera stream
is shown in Fig. m In our work, we present a 3D Convo-
lutional Neural Network (3D-CNN) architecture trained on
short videos using their grayscale image frames and the cor-
responding lane line segmentation masks. Using our neu-
ral network architecture, we are able to estimate the speed
of the ego vehicle, which can, in turn help to estimate the
speed of vehicles of interest (VOI) in the surrounding envi-
ronment.

Most players in the autonomous driving industry rely
heavily on thousands of hours of manual driving data. Most
synthetic datasets such as those tabulated in [23] provide



data from multiple sensors such as cameras, LiDAR, GPS,
and IMU. In this paper, we introduce a synthetic dataset
called Synthetic Ego Vehicle Speed (SEVS) dataset, that
comprises of car-mounted front-facing video streams with
vehicle speed ground truth generated under different envi-
ronmental conditions with varying road textures and lane
markers. We believe that our work is effective yet simple
and can be helpful as modular components in autonomous
or intelligent traffic systems.

2. Related Work

The work done by [38] is one of the early works to es-
timate the ego-motion using correspondence points detec-
tion, road region detection, moving object detection, and
other derived features. Furthermore, 8-point algorithm [|16]]
and RANSAC [9] are applied to get the essential matrix of
ego-motion. The recent work in [3]] implemented an end-to-
end CNN-LSTM network to estimate the speed of an ego
vehicle. The work performs evaluation on DBNet [5]] and
comma.ai speed challenge dataset [[1]. Other works, such
as [25]], propose speed estimation of vehicles from a CCTV
point of view. Most require camera calibration and fixed
view so that the vehicles pass through certain lines or re-
gions of interest. FlowNet [20] and PWC-Net [32]] are deep
neural networks to estimate optical flow in videos. Further
research in [|17,28|] make use of FlowNet or PWC-Net to
estimate the ego vehicle speed. However, they perform ego
vehicle speed estimation by further post-processing on the
optical flow pixel velocity. None of the works demonstrate
the end-to-end architecture capability where the speed could
be learned with differentiation of the loss function.

2.1. 3D Convolutional Neural Network

3D Convolutional Neural Networks are the best in learn-
ing spatio-temporal features and thus help in video clas-
sification [22f], human action recognition [21]], and sign
language recognition [27]. There have been recent works
[[13435)36] which use attention on top of 3D-CNN; however,
they are limited to action recognition use cases. Very few
works such as [[7|10415]] perform regression using 3D-CNNs
however they perform spatial localization-related tasks such
as human pose or 3D hand pose. Our work performs the re-
gression across the spatio-temporal aspects by having the
3D-CNN attend to both the visual features of the gray im-
ages and the lane masks.

2.2. Vision Transformers

Transformer models for video have been proposed in a
plethora of architectures. The Video Transformer archi-
tectures can be classified based on the embeddings (back-
bone and minimal embeddings), tokenization (patch tok-
enization, frame tokenization, clip tokenization), and po-
sitional embeddings. We chose the Video Vision Trans-
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Figure 2. Architecture of ViViT. Here the frames from the
video(N) are tokenized using 3D-Convolutional tubelet embed-
dings and further passed to multiple transformer encoders to
regress the speed value finally. The Transformer Encoder is trained
with the spatio-temporal embeddings

former(ViViT) [2] for our experiments due to its represen-
tation of the 3D convolution in the form of Tubelet embed-
ding as seen in Fig. [2] ViViT is easily reproducible and
has a good balance between the parameters and accuracy
for small datasets. Moreover, ViViT-H scores an accuracy
of 95.8, just below the 95.9 accuracy score by Swin-L as
per the Video Transformers Survey [29] over HowTo100M
[26].

3. Methods

We aim to estimate the ego vehicle speed by relying
purely on video streams from a monocular camera. The
authors of [33]] have proved the capability of a 3D-CNN to
learn spatio-temporal features.

A 2D convolution operation over an image / using a ker-
nel K of size m is given by [14] as :

S(i,j) = (IxK)(i, ) ()
=Y Y I1G )K(i—m,j—n) )

Expanding further on the above equation, the 3D convo-
lution operation can be expressed as :

S(hi,j) = (IxK)(h,i, ) 3)
=YY Y (i hK(h—Li—m,j—n) (4
I m n

where h is the additional dimension that includes the
number of frames the kernel has to go through. Here the
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Figure 3. Architecture from [37] modified for Lane line segmen-
tation comprises of an encoder and a decoder

kernel is convoluted with the concatenation of the grayscale
images and lane line segmentation masks. To this extent, we
incorporate a 3D-CNN network to preserve the temporal in-
formation of the input signals and compute the ego vehicle
speed. 3D-CNNs5s can learn spatial and temporal features si-
multaneously using 3D kernels [21]]. We use small receptive
fields of 3 x 3 x 3 as our convolutional kernels throughout
the network. Many 3D-CNN architectures lose big chunks
of temporal information after the first 3D pooling layer. We
refer to the pooling kernel size as d X k X k, where d is the
kernel temporal depth, and s is the spatial kernel size. Sim-
ilar to [33]], we used d = 1 for the first max pooling layer
to preserve the temporal information. This way, we ensure
that the temporal information does not collapse entirely af-
ter the initial convolutional layers. In this paper, our con-
tribution includes adding a masked-attention layer into the
3D-CNN architecture to guide the model to focus on rel-
evant features that help with ego-vehicle speed computa-
tion. We show that the error in speed estimation reduces by
adding masked-attention to the 3D-CNN network. Further
details about the impact of masked-attention are described
as part of the ablation study in section[5.1]

3.1. Masked-Attention

Convolutional neural networks comprise a learned set of
filters, where each filter extracts a different feature from the
image [|8]. We aim to inhibit or exhibit the activation of fea-
tures based on the appearance of objects of interest in the
images. Typical scenes captured by car-mounted imaging
devices include background objects such as the sky, and en-
vironment vehicles, which do not contribute to ego-vehicle
speed estimation. In fact, the relative motion of environ-
mental vehicles often contributes negatively to the ability
of the neural network to inhibit irrelevant features.

To inhibit and exhibit features based on relevance, we
concatenate the masked-attention map to the input image

before passing it through the neural network. We utilize a
single-shot network with a shared encoder and three sepa-
rate decoders that accomplish specific tasks such as object
detection, drivable area segmentation, and lane line segmen-
tation [37]]. CSP-Darknet [34] is chosen as the backbone
network of the encoder, while the neck is mainly composed
of Spatial Pyramid Pooling (SPP) module [18]] and Feature
Pyramid Network (FPN) module [24]. SPP generates and
fuses features of different scales, and FPN fuses features
at different semantic levels, making the generated features
contain multiple scales and semantic level information.

The masked-attention map is generated from input video
sequences using the lane line segmentation branch. The
concatenation of lane segmentation as an additional channel
to the camera channel allows the 3D-CNN to focus on the
apparent displacement of the lane line segments in the video
sequences to best estimate the ego-vehicle speed. Fig. 3|
shows the modified architecture designed by [37] for ex-
traction of lane line segments.

3.2. Network Architecture

Our 3D-CNN architecture with masked-attention for ego
vehicle speed estimation is illustrated in Fig. ]

We convert the RGB stream to grayscale since color
information is not vital for speed estimation. However,
masked-attention map is concatenated as an additional
channel to the grayscale image. To reduce the computa-
tional complexity and memory requirement, the original in-
put streams are resized to 64 x 64 before feeding them into
the network. Thus the input to the model has a dimen-
sion of n x 64 x 64 x 2, where n is the number of frames
in the temporal sequence. All convolutional 3D layers use
a fixed kernel size of 3 x 3 x 3 as recommended in [33].
The initial pooling layer uses a kernel size of 1 X2 x 2 to
preserve the temporal information. The subsequent pool-
ing layer, which appears at the center of the network, com-
presses the temporal and spatial domains with a kernel size
of 2 x2 x 2. We incorporate six 3D convolutional layers
with the number of filters for the layers from 1 — 6 being
32,32,64,64,128, 128 respectively. Finally, four fully con-
nected layers have 512,256,64 and 1 nodes.

The L2 loss function which we used for the 3D-CNN can
be described as :

1 & A
Lipeed =~ 3 (Si=5i)’ (5)
i=0
Iy _wrxy?
= n,;o(s’ wix) (6)
1 n
= Y (Si—WT (X;+ X)) (7)
i=0

where n is the number of frames in the input and S; is the
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Figure 4. architecture of 3DCMA

speed value ground truth of ith corresponding frame, and
S; is the inferred speed value. X; is the grayscale image
channel, and X), is the masked-attention channel for every
frame. W is the weight tensor of the 3D convolutional ker-
nel.

4. Experimentation
4.1. Datasets

In this paper, we utilized two public datasets for our
experiments - nulmages and KITTI. Some sample images
extracted from video sequences for nulmages and KITTI
are shown in Fig. 5] In addition to the publicly avail-
able datasets, we introduce a synthetic dataset for ego-
vehicle speed estimation having vehicular speeds simulated
in ranges of 0-120 km/hr.

4.1.1 nulmages Dataset

nulmages is derived from nuScenes [4], and it is a large-
scale autonomous driving dataset having 93k video clips
of 6 seconds each. Each video clip consists of 13 frames
spaced out at 2 Hz. The annotated images include rain,
snow, and night time, which are important for autonomous
driving applications. The vehicle speed is extracted from
the CAN bus data and linked to the sample data through
sample tokens.

4.1.2 KITTI Dataset

The KITTI Vision Benchmark Suite [[11,|12] is a public
dataset containing raw data recordings that are captured and
synchronized at 10 Hz. We utilized the RGB stream ex-
tracted from camera ID 03 only. The ego-vehicle speed val-
ues are extracted from IMU sensor readings.We used data
from City and Road categories. To facilitate future bench-
marks from the research community, we report our train and
test splits in Table [T]as well.

KITTI
Category Train Test
0002, 0003, 0009
0011, 0013, 0014
. 0048, 0051, 0056 | 0001
Cit 20110926 drive_ | 359" 0084, 0091 | 0117
y 0095, 0096, 0104
0106, 0113
2011_09_28_drive_ 0001
2011_09_29_drive_ 0071
. 0015, 0027, 0028 | 0070
Road 20110926 drive_ | 1,9 0032, 0052 | 0101
. 0004, 0016, 0042
2011_09_29 drive_ 0047

Table 1. Train and Test video samples for KITTI dataset
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Figure 5. Visualization of sample images - KITTI and nulmages dataset

4.1.3 Synthetic Ego Vehicle Speed (SEVS) dataset

We rendered the synthetic simulations using Blender [[6] 3D
modeling tool. Road length was modeled for a distance of
1000 meters. Cat-eye and solid lanes were modeled to in-
crease the variations within the dataset. We utilized Rigacar
addon to simulate vehicle speeds in a controlled manner.
We additionally mounted the front-facing cameras at dif-
ferent heights within the car and introduced focal-length
perturbations to increase the data diversity. The dataset is
also complemented with variations in environmental condi-
tions with the inclusion of normal, sunny, sandstorm, and
night simulations. Some sample images from SEVS is
shown in Fig.[6] We generated video sequences mimicking
a car-mounted dash-cam for car speeds ranging from 0-120
km/hr.

4.2. Evaluation metrics

We utilize the conventional evaluation protocol that is
used in the literature for the task of regression - Mean
Absolute Error (MAE) and Root Mean Square Error
(RMSE) [46].

We compute the MAE and RMSE as follows :

=

RMSE = /(

) 2 i —9i)? ®)

S| =

1

1

1 n
MAE = (=) ). I§i =il ©)
i=1

where y; denotes the ground truth ego-vehicle speed
value and y; denotes the predicted speed value by the Al

model.

5. Results

We evaluate the performance of our proposed 3DCMA
architecture and compare it against the standard ViViT with
spatio-temporal attention. We report the evaluation scores
on the test set for KITTI, nulmages and SEVS datasets in
Table 2l

Evaluation Metric

Dataset Method RMSE MAE
1 ViViT | 1782 1326
NUIMAESs | 3nCMA | 1.297  0.974
VIViT | 5.024 4324

KITTE | apema | 3290 2528
VIViT | 1.639  0.506

SEVS 1 3pema | 0982 0.506

Table 2. Evaluation on test datasets for (a)ViViT (b)3DCMA

We observed approximately 27% improvement in RMSE
and MAE for 3DCMA compared to ViViT for the nulmages
dataset, while the improvement in RMSE and MAE on the
KITTI dataset was 34.5% and 41.5% respectively. Finally,
we observed 40% improvement in RMSE for 3DCMA com-
pared to ViViT on the SEVS dataset.

5.1. Ablation Study

To further understand the importance of masked-
attention, we conducted an ablation study by removing
masked-attention input to the 3D-CNN network. It is to



(b) Variation in environment condition. The left image shows the driving condition under sunlight. The middle image shows the sand storm condition in
desert areas, and the right image shows night synthetic driving conditions

Figure 6. Visualization of sample images - SEVS dataset

be noted that the input to the 3D-CNN model is a single-
channel grayscale image after the removal of the masked-
attention input. Evaluation scores for the test datasets are
shown in Table Bl The addition of masked-attention re-
duced RMSE by 23.6% and MAE by 25.9% for the nulm-
ages dataset, while the reduction in RMSE and MAE were
25.8% and 30.1% for the KITTI dataset.

Evaluation Metric

Dataset  Method RMSE MAE
- Imases | 3D-CNN without MA | 1698 1315
Uimages | spcMA 1297 0974

3D-CNN without MA | 4.437  3.617

KITTE | 3pema 3290  2.528

Table 3. Evaluation on test datasets for (a)3D-CNN without
masked-attention (b)3DCMA

6. Discussion

In this paper, we propose a modified 3D-CNN architec-
ture with masked-attention employed for ego vehicle speed
estimation using single-camera video streams. We evalu-
ated the performance of our proposed architecture on two
publicly available datasets - nulmages and KITTI. We com-
pared our proposed method against a recent state-of-the-
art transformer network for videos, ViViT. We additionally
investigated the impact of employing masked-attention to

3D-CNN and saw that the injection of masked-attention im-
proved the MAE and RMSE scores across all scenarios.

One limiting factor we noticed in these datasets is the
lack of driving data for higher vehicle speeds. The vehi-
cle speeds are available only up to 20m/s, thus limiting the
scope of deploying these models for highway driving sce-
narios. To overcome this bottleneck, we generated synthetic
dataset for covering wider ranges of driving speeds.

7. Conclusion

Though ViViTs can model long-range interactions
across videos right from the first layer, we demonstrated
that a 3D-CNN injected with masked-attention performed
better overall across all test scenarios. In this paper, we
introduced a simple yet effective 3D-CNN with masked-
attention architecture that can effectively compute the ego-
vehicle speed using monocular camera streams. We addi-
tionally introduced a synthetic dataset that can contribute to
current research. Immediate future work is the extension
of current work to utilize the speed of ego vehicle to esti-
mate the speeds and locations of environment vehicles for
in-vehicle motion and path planning.
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